研究电磁场中各物理量之间的关系及其空间分布和时间变化的理论。人们注意到电磁现象首先是从它们的力学效应开始的。库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。 A.-M.安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。
人们注意到电磁现象首先是从它们的力学效应开始的。库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。 A.-M.安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。基于这与牛顿万有引力定律十分类似,S.D.泊松、C.F.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述。1846年,M.法拉第还提出了光波是力线振动的设想。J.C.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电磁场的基本定律归结为4个微分方程,人们称之为麦克斯韦方程组。在方程中麦克斯韦对安培环路定律补充了位移电流的作用,他认为位移电流也能产生磁场。根据这组方程,麦克斯韦还导出了场的传播是需要时间的,其传播速度为有限数值并等于光速,从而断定电磁波与光波有共同属性,预见到存在电磁辐射现象。静电场、恒定磁场及导体中的恒定电流的电场,也包括在麦克斯韦方程中,只是作为不随时间变化的特例。